If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23x^2-124x+63=0
a = 23; b = -124; c = +63;
Δ = b2-4ac
Δ = -1242-4·23·63
Δ = 9580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9580}=\sqrt{4*2395}=\sqrt{4}*\sqrt{2395}=2\sqrt{2395}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-124)-2\sqrt{2395}}{2*23}=\frac{124-2\sqrt{2395}}{46} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-124)+2\sqrt{2395}}{2*23}=\frac{124+2\sqrt{2395}}{46} $
| 8/5x+3=13/5 | | 4x+4-6x=2 | | 9a-7a=-6 | | 4((2z-3(6-4z))-12(z-1)=4 | | 9x-5+8=6 | | 1.1=1/x | | 12x-100=15x-40 | | 3w/7=18 | | 3w-7=18 | | 4-5r/3=-2 | | 5=r+6/5 | | x=7x5−4x4+7x−15 | | 12x-100=15-40 | | v-6.37=4.58 | | -13=x/5-10 | | x=4x−6x8 | | w÷6=24 | | 53=-7-4n | | 4(y-2)+7=23 | | 2.x-1÷5=12 | | -4=-5+p/15 | | 9j-6j=3 | | -9+8k=-145 | | 8x+4=4x-1-7 | | -17m=-377 | | 3/5x-5=3/4x-2 | | 4x=11x^{2}. | | 16(14-4x)-10=6 | | x+2.25(x)=3/14 | | 2x-10=44+6 | | 5(2h-4)-3h=29 | | 2z/7+1=-4 |